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Roundhouse: A Security Architecture for

Active Networks
Cynthia E. Irvine William R. Shockley
Naval Postgraduate School Cyberscape Computer Services
Center for INFOSEC Studies 1885 Franklin Street
and Research Lebanon, OR 97355
Monterey, CA 93943
15 May 1998
Abstract

We describe a high-assurance framework for actively networked clients and servers. Called

Roundhouse consists of the following elements:

1.

2.

Pinkerton, a comprehensive model for the implementation of dlstrlbuted protectlon domains
that provide for robust protection in an active networks environment;
Iron Horse: Functional and security design of a kernelized host providing essential ring-

~ based protection, packet authentication, and cryptography services for higher layers.

DEPOQT: Specification, design, and prototype implementation on a PC base of the framework
and initial content of dynamically modifiable servers. The intent is that DEPOT clients and
servers would take advantage of platform protected modes where available (e.g., Windows

NT, Iron Horse) leading to client-server computing in a network of heterogeneously trusted
hosts.

As a general facility for installing and managing application ""hooks" DEPOT incorporates
the following key new ideas:

» the division of sets of hooks by module,
» the partial ordering of modules,
* binding hooks to network names, and

= the provision of a run-time model of module behavior with a visible state machine
model that abstracts and externalizes the dynamic behavior of that module.

The architecture is unique in that it composes strong and weak systems securely and permits the
dynamic retooling of executing software.




Executive Summary

We are targeting C*I and OLTP networked systems because they are immensely valuable.

We focus on these because they offer the greatest opportunity for cost reduction:

Maintenance and retooling costs are extremely high and outweigh development costs.
They are vulnerable, relatively unprotected national assets.

Our long-range goal is to permit an order of magnitude reduction in protection and retooling

costs. (Protection cost is expected loss due to penetration.)

Our solution, Roundhouse, involves the following architectures:

Pinkerton, a comprehensive model for distributed protection domains.

DEPOT, a distributed operating system extension for C*I/OLTP applications.

Iron Horse, a high assurance kernel supporting DEPOT for use where “ground zero” points
of vulnerability must be protected (e.g., master key repository)

Roundhouse employs a highly innovative blend of existing and new technologies to achieve

its overall goals. Each of the following plays a critical role.

Dynamic linking techniques (1960s)

Multi-state hardware based protection (1960s, re-emerging)

Transaction processing (1970s)

Split address space technology (1970s)

Event-oriented programming (unique to this architecture)

Scalable distributed authentication (1990s)

Active networks (1990s)

Answers the question: where do you put the crypto keys? (unique to this architecture)

The Pinkerton architecture incorporates

A sound, conservative access control model for protection of distributed resources
Prevents critical resources from migrating to weakly protected domains or hosts
Prevents critical resources from being contaminated or modified from weakly protected
domains or hosts

Permits strongly protected servers to service weakly protected clients

Completes authentication architectures by specifying protection grades for functions
The DEPOT architecture supports

Both queued and RPC-oriented transaction processing

Continuous system operation

Supports dynamically customizable system environment per server

Provides strong support for encapsulation of legacy applications

The Iron Horse architecture includes

Minimized security kernel optimized for transaction processing

Includes essential TP support functions (e.g., logging, secure multi-threading)
Offers optional support for military secrecy policies

High degree of concurrency inside the kernel

In summary, this architecture is unique in providing

An architecture that composes strong and weak systems securely

Dynamic retooling of executing software



1 Introduction to the Problem

The following scenario is an example of the real world problem domain that can be
supported with secure active networking:

The Universal Command and Control System (UCCS) is a highly distributed system
involving numerous platforms and commands, supporting military operations worldwide. The
Highly Reliable Software Production Facility (HRSPF), recently assigned responsibility for
improving system performance, has generated update 3.01, an update to routing algorithms
intended to be installed in thousands of routers throughout the system, including routers serving
highly critical processing nodes. The update introduces a critically needed performance’
improvement, so that time is of the essence. Accordingly, it is determined that the systems’
active network capability will be used to distribute and install the update. This capability permits
information packets to be flooded throughout the network without requiring the creation of
individual sessions between HRSPF and each router. Whenever a packet traverses a router the
update is extracted, validated, and loaded. In some relatively short time, most routers will have
been updated.

Our approach addresses the following needs:

1. Itis highly undesirable to be required to remove a router from service before installing an
update. The DEPOT component will define an architecture for flexible servers that can be
safely and dynamically retooled, without risking loss of a packet or message, entering an
inconsistent state, or having to disable the server in order to recompile or re-link program
code. We reach this goal by creating a useful blend of transaction processing (TP), dynamic
linking, and object-oriented technologies.

2. Itis unrealistic to suppose that attempts to introduce spurious active packets into the network
will not occur. In order to permit the use of such technology in support of mission-critical
processing, a sound, highly reliable approach for differentiating valid from spurious packets
must be available. Although cryptography and access controls provide the needed
technologies, these must be incorporated into a workable protection architecture that can be
independently reviewed and is demonstrably sound. Moreover, the architecture must
accommodate the employment and inter-operation of host platforms having a wide range of -
trust characteristics. Our architecture addresses this need by providing a detailed model
addressing protection in a distributed system composed of heterogeneously trusted host
platforms. ‘

3. Cryptographic solutions addressing the trusted distribution of software rely on the existence
of some repository where highly sensitive keys may be stored. Ultimately, the security of any
cryptographically protected system is only as good as that afforded to its most sensitive keys.
‘Our architecture therefore includes architectural work for a high assurance host, Iron Horse.
Roundhouse refers to the combination of DEPOT running on the Iron Horse kernel.

The problem domain addressed by Roundhouse is not confined to military command and
control (C*I) systems. Roundhouse and DEPOT hosted on conventional platforms is intended to
support On-Line Transaction Processing (OLTP) applications of all varieties. This style of
application design is widely used today in many commercial sectors such as energy, banking,
finance, transportation, and telecommunications to perform critical business functions. Of
course, the protection and reliability of these sectors is of national concern [2].




1.1 Military and Civilian applications for DEPOT

Similar requirements have driven civilian OLTP and CI military systems towards

remarkably similar architectural styles, which we call the Transaction Processing (TP) paradigm.

Its characteristics are as follows:

e A unit of work is not accomplished by one process from start to finish. Rather, it moves

through the system from one specialized process to another. Each process is furnished with
just the resources it needs when initialized to save OS calls for requesting resources.

e Two control strategies are frequent for TP applications. One strategy is to manage a work

item using Remote Procedure Calls (RPC) or similar facilities: i.e., a “master” server process
divides tasks into subtasks, farms them out to subordinate servers, then collects and collates
the results. The difficulty with this strategy is that it often unnecessarily centralizes control
and leads to unnecessary network traffic. Accordingly, a second control strategy, modeled as
a set of workstations coupled by queues, through which work flows as through an assembly
line, is also common. This strategy has the benefit of decentralizing control and rendering
the application more robust, but can make it hard to track work.

Multi-threading — the multiplexing of multiple independent execution points (each with its
own stack) onto a single address space — is very common. The usual reason given for
multithreading is that it permits one to substitute lightweight context switches for
heavyweight switches and thereby increases throughput. (This is true, however, only if
multithreading is used intelligently.) It is universally understood that multi-threading poses a
significant problem for operating-system level security, where address space isolation is the
basic technique for enforcing run-time access controls.

e Generally, typical performance goals might be stated as:

1. To achieve stated end-to-end average latency.

2. To preserve this latency under high load conditions (e.g., up to 80% or so of
theoretically maximum capacity).

The optimization techniques used for TP, some of which are described above, work well

when the work to be done is fairly stereotyped, because it then becomes possible to tailor
processes into “specialists” and route work to the processes specialized to do it. Unfortunately,
because the TP paradigm and time-sharing paradigms are not very similar, the relationship
between TP applications and time-sharing OS are often fairly uneasy. It is not uncommon to find
the application overriding, disabling, or working around operating system resource allocation,
scheduling, and security policies and re-implementing them as part of the application.

Several general forces then converge to render many TP application systems very inflexible

and costly to change or maintain:

They are intrinsically large programs: too costly to replace very often.

The application logic tends to be heavily interlaced with calls to functions associated with
resource management, security, scheduling, and so on. Maintenance is error-prone, costly,
and time-consuming because a change potentially impacts these system functions in
mysterious ways.



e Because the application is mission- or business-critical, it is costly (or deadly) to shut the
application down for maintenance.

As well as incurring significant costs for industries already using TP, this general lack of
flexibility has frustrated the use of TP techniques by industries that have less stereotyped work
flows: e.g., hospitals, pharmaceuticals, information providers, professional services and the like.

Considering these factors,.we have identified the following as important long-range research
goals for Roundhouse:

e To achieve a radical improvement in the maintainability of new TP applications by divorcing
computational functions as completely as possible from logic integrating the function into a
larger system.

To embrace (not merely tolerate) the requirement to effectively encapsulate legacy servers
and applications.

To provide a malleable TP-oriented framework that permits dynamic reconfiguration of work
paths, and retooling of individual system environments for servers on a per server basis

To investigate hardware support for secure multi-threading

To investigate what functions must be kernelized to support TP
These goals have strongly influenced our technical approach.

2 Roundhouse Sketch

Roundhouse involves the use of active networking techniques to support Command, Control
Communications, and Intelligence (C*I) and On-Line Transaction Processing (OLTP) application
systems. We have targeted this class of systems because it includes most so-called critical
infrastructure systems. The security architecture includes the following elements:

o Pinkerton, a comprehensive model for the implementation of distributed protection domains
that provide for robust protection in an active networks environment;

e An extensible, ob;ect-onented interface architecture for a class (Depor) of objects
encapsulating individual C*I/OLTP server processes.

e An architecture and prototype design for a high-assurance run-time kernel (lron Horse)
hosted on an ISA or extended ISA-compliant hardware base tailored to support C*'/OLTP
processing. Iron Horse is used in the Pinkerton architecture to support security-critical
management and storage functions (e.g., key management, and storage of root keys, and
storage of critical certificates).

The following sections outline our technical approach to developing a high assurance active
networking architecture.

2.1 Nomenclature

The primary facility seen by designers and programmers is called DEPOT. DEPOT is an
acronym standing for “Distributed Extensible Processing Objects for Transactions” and refers to
both the software implementing the DEPOT object class, and objects of the class itself. Roughly
speaking, a DEPOT object is an encapsulated server with a server-specific, extensible execution
environment. Programmers are able to define dynamic installed service sets (DISSs) for the




Depots. The remaining architectural names (Iron Horse, Roundhouse) are not acronyms, but
simple code names.

Since one of the primary goals is usability on a variety of platforms, DEPOT is portable. The
degree to which DEPOT objects and their contents are protected will naturally vary from
platform to platform, depending upon the underlying protection mechanisms made available by
the host. Iron Horse is a specialized platform intended to provide DEPOT with strongly enforced,

hardware-assisted local protection capabilities. Roundhouse is the code name for our project,
~ encompassing the entire set of architectures to be produced for both DEPOT and Iron Horse.

2.2 Roundhouse Security Overview.
Roundhouse security is decomposed into two parts that are handled quite differently.

o Protection refers to the enforcement of access controls to protect Roundhouse components
(i.e., host system and Roundhouse code and data) using the strongest protection mechanisms
provided by the host hardware and operating system. A key feature of our protection model
(Pinkerton) is that it explicitly accommodates hosts with heterogeneous protection and
authentication mechanisms (including those providing no hardware-supported protection at
all). Our strategy thus differs in kind from many other efforts. Rather than trying to design a
software-only protection solution [3] that will provide the same protection quality wherever it
runs, we provide a means for administrators to grade the systems they have, allocate critical
services and data to hosts of appropriate grade, and then operate the heterogeneous network
safely. The protection model provides optional support as well for the enforcement of
military-style mandatory access contro! policies [1].

o Application-level security refers to the enforcement of controls, including, but not limited
to, traditional discretionary access controls (DAC) protecting user-level data maintained or
processed by Roundhouse applications. By definition, such access controls are type-specific
[5]. In order to provide a general and extensible environment for application-level security,
we do not wish to constrain application security policy or its administration. Therefore
Roundhouse provides a flexible framework that permits suitably authorized administrators to
install or replace such controls. As a special case, DAC and audit for Roundhouse objects
themselves are provided as administrator-replaceable software units using exactly the same
mechanisms available for any Roundhouse application administrator. A key notion driving
the application security framework design is that the modules making the access control or
audit decision are dynamically linked to the application proper, which is responsible only for
identifying when an access check is required. The currently linked access control module
evaluates the request and passes to the application an action indicator telling the application
whether to grant or deny the access. Audit log events are transparently generated if required
at the same time. Thus, a properly designed Roundhouse application can achieve a rather
high degree of policy transparency.

The architecture will support " generic" ACL-based controls for objects encapsulated by
the DEPOT core (queues, modules, and so on). Appropriately authenticated active packets
may be used to modify, remove, or replace the default controls w1th application-specific
controls on these objects.

A problem with identity-based controls is that each layer of application software creating
new applications must re-implement them for new abstractions. The DEPOT architecture



facilitates this by permitting application-level agents to expose transitions representing the
need for an access check. This affords the application designer the opportunity to perform the
check in a specialized “*add-on" agent subscribing to the access check transition. The
advantage of using this capability is that the access policy is not ““hard-wired" into the
application logic and so can be easily replaced or modified. Naturally, user-level requests do
not receive enough privilege to modify the ring-protected identity-based security agents.

The event-based architecture can be used in much the same way to accommodate audit:
one can dynamically install an audit agent that captures and stores information from the
current event and request context transparently to the application agent inducing the event.

3 Pinkerton Protection Model

Pinkerton is a high-level protection model that specifies locally enforceable rules for building
"a protection-safe network from individual Roundhouse hosts. A key feature of the Pinkerton
model is that it permits the use of heterogeneous hosts (i.e., using different internal protection
mechanisms, including none). What is meant by “protection safe” is that a more highly protected
server, running on a node such as Iron Horse, can safely provide services to all of its clients,
even those running on a host with weaker protection. In order for a less-trusted client to subvert a
server, the server's internal protection mechanisms would have to be overcome: it cannot be done
simply by sending the server a spurious "active packet", management request, or service request
- containing a Trojan Horse. Roundhouse core services uses cryptographic authentication
mechanisms to label incoming packets and requests and carefully segregates system-level and
user-level packets and requests: the locally available protection mechanism is used thereafter to
separate them. Ultimately, protection. is based upon key distribution: a "weak" node never is
given a key that would allow its traffic to be labeled elsewhere as from a stronger node, and it
cannot gain such a key without subverting a node of the stronger protection class.

3.1 Protection Policy Design

Pinkerton actually models an enumerably infinite class of potential protection policies. The
system security officer selects one of these policies by defining a set of abstract protection
classes, defining a partial ordering over these classes representing their intended trust
relationship, and allocating nodes and internal protection domains to each class. (Relatively
obvious constraints are imposed by the model on the allocation based upon intrinsic privilege
relationships, software dependencies, and so on: one cannot make an allocation that permits a
more trusted domain to depend upon a less trusted one.) '

Additionally, for each class, one defines an authentication and encryption profile that
Roundhouse will require for management-level operations on entities (including Depots) of that
class. Roundhouse distinguishes between client requests/replies to a Depot (which are simply
presented to the Depot on its queues) and Depot management requests (which are interpreted and
executed by the Roundhouse core).

Pinkerton addresses the issue of cooperation under conditions of mutual suspicion [4,6].
Administrators may set up new, shared classes, or agree to treat designated classes (one from
each administrative domain) as equal, or both. The modified policy settings will then permit the
desired degree of sharing. :




Pinkerton permits servers to service clients not previously known by assigning such requests
to an administratively defined protection class (typically “protection-low™). '

3.2 Intended use

It is possible to define a fairly elaborate, application-specific system with a large number of
distinct protection classes using the Pinkerton model. Experience with systems incorporating
similar integrity controls has proven that this is usually a mistake. For the administration of a
small enterprise one might think in terms of only a few groups of users (e.g., insiders and
outsiders) and define a correspondingly small set of protectlon classes. A good motto is “less is
more, but none is too little”.

3.3 Protection Policy

In general, it is expected that most aspects of security, both in the narrow sense of traditional
access controls and the broader senses being discussed by the active networks community will be
implemented as application-specific dynamically installed service sets (DISSs). However, the
issue of self-protection is such an important one that controls addressing this need are built into
Core Services.

An important consideration is that the quality of protection available for DISSs and
applications varies from platform to platform, depending upon the underlying host. On the one
hand, we want to exploit and leverage strong isolation and protection capabilities where they
exist (e.g., on Iron Horse, Windows/NT, VMS, etc.). On the other hand, we do not want to
unnecessarily prohibit communications between stronger and weaker machines. We therefore
need a coherent, demonstrably correct model! that prescribes which requests are to be honored,
and which are to be ignored in order to maintain the integrity of strongly protected DISSs. This
model must meet some common-sense objectives:

e Support management requests. We would like to be able to dynamically modify, replace or
install DISSs, using active network techniques, if, and only if, the packet or request implying
such an action emanates from a sufficiently trustworthy source.

¢ Support service requests. If a request packet does not imply modification of the DEPOT
configuration, but simply requests services, the range of sources we are willing to service is
presumably broader. Meeting the first objective by requiring all packets to meet the criteria
enforced for “management” packets is therefore inappropriate.

The key problem that must be addressed for any framework hosted on many different
platforms is that of understanding how strongly protected instances (e.g., hosted on Iron Horse)
may successfully provide services to poorly protected instances (e.g., hosted on a PC running
MSDOS) without excessive risk to its own integrity. Three major issues (and a host of minor
‘ones) must be addressed:

e At the local level, how do we prevent the less trusted client from stealing any privileges the
more trusted server might possess?

o Atthe level of an administrative domain (i.e., a set of nodes managed by a single enterprise)
how do we know that the composition of individual solutions is coherent and meaningful?



e At the level of communications among different administrative domains, possibly with quite
different notions of what it means to be trustworthy or approaches for protecting data, how
may one arrange for the safe sharing of information and services without exposing either
domain to uncontrollable risks? (This is the problem of mutual suspicion.)

As the model tackles a difficult problem in some detail it is necessarily somewhat complex.
The remainder of this section describes some of its salient features. Space precludes sketching
the implementation approach in great detail.

The key insight is that what must be accomplished in the distributed environment is exactly
what is accomplished locally by a ring mechanism. Rings provide a means whereby service
requests by less trusted subjects (i.e., service calls) can be safely honored (after the appropriate
set of argument validations is performed) without compromlsmg the integrity of a properly
implemented trusted subject (the same process executing in a more privileged ring). The primary
difference is that in the distributed environment, it is impossible for a local protection domain in
one node to be privileged (in the sense of having direct access) with respect to objects in another
node: everything must be passed as argument or result. But this difference is a difference in the
safe direction. Ultimately, our argument that the model is correct is based upon the belief that
rings, properly utilized, work, as our model is in the large a “distributed version of rings”. Most
of the actual complexity derives from the need to show how authentication and cryptography fits
into the picture and specification of an adequate set of constraints to deal with differences in '
mechanism strength.

3.4 Pinkerton Details

The following section (adapted from the proposal) descrlbes the Pinkerton model in greater
detail.

3.4.1 Local Protection Domains (LPDs)

Local Protection Domains are the basic bu11d1ng blocks from which the desired network—-
level abstractions are built. Intuitively, an LPD is an execution domain or its like. Unlike more
traditional models, we accept LPDs that are protected by mechanisms of various strengths.
Policy constraints are eventually defined that permit administrators (not applications, users, or
programmers) to take these differences into account. For example, on one node we might have
LPDs protected by address space separation with hardware assistance (e.g., Iron Horse); on a
second, local protection domains built with server-owned ACLs (e.g., VMS or Windows NT); on
a third, virtual domains managed by a closed language interpreter (e.g., a Java machine); and on
a fourth, a single monolithic LPD (e.g., an ordinary PC).

Within each node, a partial trust ordering is given for its LPDs based upon privilege and
dependency relationships, in the natural way (i.e., if A is privileged with respect to B, and/or B
depends upon A, A must be as or more trusted than B).

3.4.2 Security Administration Domain (SADs) .

A security administration domain is a dynamic set of nodes (and by inclusion, their LPDs)
that shares and enforces an identical, administratively defined protection policy. Services may be
extended to nodes outside the SAD. No implication is intended that the SAD have any purpose

-other than to establish the range of nodes enforcing the same administratively defined policy.
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3.4.3 Extended Protection Domain (EPDs)

EPDs are network-visible objects representing groups of LPDs defined by the SAD
administrator to be equivalent, for the purposes of protection — that is, equally trustworthy. The
set of EPDs is partially ordered, with an ordering consistent (in the natural sense) with the partial
orderings of the LPDs within nodes. We denote by the expression E(4) the unique EPD
containing LPD 4. Basically, two rules must be enforced.

.o LPD A4 may use services provided by LPD B only if E(B) is as, or more trusted than E(4).
Obviously, if this rule is violated, the trustworthiness of LPD B will be compromised
because it now depends upon a less trustworthy component.

e LPD 4 may accept management commands (including, but not restricted to, commands to
install or modify the existing DISS configuration) from LPD B only if E(B) is as, or more,
trusted than E(4).

In addition to assigning LPDs to EPDs, the administrator defines for each EPD a set of
indicators flagging the cryptographic and authentication, and other protection checks that must
be associated with communications involving managing or servicing the LPD (e.g., for adding
an DISS that executes in the LPD).

Thus, enforcement of the rules broadly expressed above involves several ideas:

e FEachand every flagged criterion must be passed before a packet will be accepted as a valid
service response or management directive,

e Included among these are source authentication, determining that the desired cryptographic
protocol was applied, and whatever other criteria might be built into the model (exactly how
many criteria will be applied is a research issue).

We believe that this approach is consistent and sound, because it can be mapped to abstract
models of ring-like protection systems. In our interpretation of the model for distributed
protection, these operations (in part) turn into the operations of “selectmg and using indicated
authentication and encryption protocols”.

3.5 A Note on Application Security

Security for Roundhouse supported-applications is decomposed into two parts, the first of
which has been described as “Protection”. We have performed this decomposition because we
are convinced that protection concerns are of sufficient importance, and of sufficient complexity
in the network environment, to demand a single point of administration where a knowledgeable
administrator can make decisions regarding the protection structure of the SAD that cannot be
overridden by local node administrators, programmers, or users. The protection model described
can, if used thoughtlessly, quickly lead to undesirable complexity: practical SAD administrators -
will typically define only a few EPDs.

The remaining security concerns (and there are many) we treat as “application-specific”
security. The default security DISS will provide ACL-based discretionary security for DEPOT
objects proper. These controls, as for any DISS, are dynamically replaceable (provided one is
authorized under the current ACL to make the replacement and the replacement software passes
the protection checks it must to satisfy the protection policy.
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One can imagine creating specialized DISS modules permitting cooperating instances to
enforce many of the more exotic policies being discussed within the active network community.
The notion of enforcing context-sensitive policies based upon flows (considered as threads of
execution in their own right) is also very intriguing: we believe that this research direction leads
to enforcement of typical business rules.

4 Iron Horse

Iron Horse is a high-assurance platform intended to support critical security functions in our
active network architecture. It will provide significant protection for instances of DEPOT, the
framework for dynamically modifiable servers. Iron Horse provides a basis for establishing
protection domains and is, itself, self-protecting. As a DEPOT host, it is intended to support the
entire spectrum of DEPOT processing. From the point of view of protection, the Iron Horse
system can be decomposed into the following subsystems, beginning with the most privileged
and proceeding to the least.

4.1 Non-discretionary Integrity Domains

IRON HORSE is intended to enforce locally a coarse-grained non-discretionary integrity
policy, primarily to afford strong assurances that hosted DEPOT servers cannot be corrupted by
spurious active packets or server management commands. Users may wish to take advantage of
the capability to partition user-level data into non-discretionary protected subsystems.

It is useful to state a litmus test for evaluating the overall success of a security architecture:

It must be possible to protect, with a strong degree of confidence, critical
enterprise data and the servers manipulating that data while continuing to offer
less-protected service to clients executing on less trusted, or untrusted platforms.

We believe that a system approach failing to meet the first criterion cannot be called secure
in any justifiable sense, while a system approach failing to meet the second criterion cannot be
called operationally useful in any justifiable sense.

In order to meet the litmus test, it is essential that DEPOT-encapsulated servers be able to
receive and process queries emanating from less trusted clients. This implies that the servers
must be trusted with respect to a pure Biba [7] integrity policy.

The Iron Horse solution is based upon the observation that the transfer of a service request to
a DEPOT server is analogous, in every respect, to the transfer of gate call arguments from a less
to a more privileged ring. How to build a gatekeeper that effectively sanitizes arguments is well
understood. In the architecture contemplated, IRON HORSE and DEPOT agents executing in
highly privileged (and thus, highly protected) rings will coordinate to perform this function,
resulting in a high degree of confidence that spurious privileged active packets are processed in
the correct ring and that untrustworthy user-level requests are executed in an outer ring not
privileged to modify critical data nor initiate management or reconfiguration actions. The partial
ordering of DEPOT modules is key to making this architecture work, as it allows us to allocate
modules to execution rings in a meaningful way while drawing on experience in extensible
protection architecture.
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4.2 Hardware Base

- A primary goal of the Iron Horse effort is to investigate the exploitation of multiple
hardware-supported address spaces or split address space technology to reduce the cost of inter-
domain switching. The Intel iAPX 86 CPU architecture already supports a simple form of MAT
with two per process address spaces (i.e., the LDT, or local descriptor table, and GDT, or global
descriptor table), although few commercially-available general purpose Operating Systems have
chosen to exploit this capability in the way we envision. Accordingly, the initial hardware target
for Iron Horse will be ISA-bus compatible systems (e.g., ordinary IBM-compatible PCs) as this
" hardware configuration is widely available, relatively inexpensive, and supported by numerous
development environments. Although we are targeting IBM-compatible hardware, there is no
current intent to design a DOS- or Windows-compatible API into Iron Horse.

Ultimately, CPUs supporting a larger number of independent address spaces may become
available. Such CPUs would become an attractive target for further experimentation.

4.3 Iron Horse Kernel

Residing in the most privileged protection level (Privilege Level 0) is the Iron Horse Kernel.
This might concisely be described as a relatively traditional kernel that virtualizes access to basic
system resources and provides a virtual environment for higher-level processes. The kernel will
not be “monolithic” in the normally understood sense (i.e., a single monolithic “critical section”).
Instead, it will support a high degree of concurrency. The principal researchers have considerable
practical experience in designing and implementing non-monolithic kernels.

The security policy enforced by the kernel will be a highly-configurable label-based policy
supporting the definition and protection of a set of partially ordered protection domains, with
domain isolation based upon management of per process LDT and GDT images and the
hardware-based ring mechanism local execution domains.

The primary innovations to be incorporated in the Iron Horse Kernel design are these:

o Exploitation of LDT management functions. This permits the implementation of secure
multithreading in the DEPOT layer.

e Support for essential transaction-oriented functions. In particular, the kernel will export a
logging function and a set of functions allowing it to respond (as a local resource manager)
to transactional commands issued by a DEPOT level transaction manager (e.g., begin
transaction, end transaction, commit, abort, checkpoint, savepoint).

e Support for lightweight context switches in architecture exploiting split address space
technology. Transitions between high assurance domains have traditionally required full
context switches, resulting in lowered system performance. Threads have been developed to
avoid context switching. Because threads share address spaces, hardware mediation cannot
be used to place threads into different protection domains. We intent to work on reducing the
cost of context switches by exploiting the multiple descriptor tables offered by the 1A86
CPU. This permits the implementation of secure multithreading in the DEPOT layer.

e Optimized to support the efficient scheduling and execution of DEPOT objects. Put another
way, the kernel will be designed for TP-style processing rather than, for example, time-
-sharing.
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Figure 1. Iron Horse and DEPOT integrity domains.

e Although “low-level” synchronization primitives solving the secure reader-writers problem
will be exported (e.g., eventcounts, sequencers) it is expected that synchronization of most
applications will be via the DEPOT level transaction manager. The primary use of low-level
primitives would be to support the development of application-level resource managers.

The second point deserves further elaboration, as the full import of the requirement may not
be immediately obvious. Modern distributed transaction processing architectures are based upon
the cooperation of a higher-level transaction manager (which will be part of DEPOT) and lower
level resource managers providing access to durable and recoverable data. Both depend upon a
basic logging capability. Making the kernel a resource manager means that when a failure
occurs, it will recover (in coordination with other participating nodes) into a state that is not only
secure, but consistent with all distributed transactions that are recovered. Figure 1 illustrates
Depots on a base supporting integrity domains for applications.

S DEPOT

As one means of providing isolation of DISSs, it is desirable to permit DEPOTsS to execute in
distinct LPDs if made available by the host machine. (How DISSs are allocated to these domains
-remains the province of the DEPOT administrator.) A DEPOT with its DISSs can span multiple
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LPDs. However, intrinsic functional dependencies will constrain how this can be done. An
important research goal will be to investigate such constraints.

5.1 The DEPOT Processing Paradigm

DEPOT is an alternative model to that of simply loading a statically linked, opaque code
segments into the address space of a run-time process.

The DEPOT model replaces the notion of a process with that of a durable, recoverable active
processing object called a Depot. It is intended that Depot objects be well-suited for
implementations of remotely accessible servers. The internal process structure of a Depot is
hidden from its clients, who communicate with it using queue-based messages.

A typical Depot makes the following fnajor sub-objects visible to clients (although only
clients involved in managing or reconfiguring the Depot will be interested in many of them):

* one or more message queues that handle all communications with the Depot. Schemas for
each queue are also visible.

.= a collection of agents (code objects) that collectively implement the behavior of the Depot.
Agents are grouped into a partially ordered set of named modules.

» For each module, an externally visible state machine model (SMM) that abstracts and
externalizes the dynamic behavior of that module. In a sense, SSMs are to behavior as
schemas are to data. The transitions of the SSM are called events. Events are typically
associated with internal calls for service (e.g., system calls such as alloc, enqueue, dequeue,
etc.) Some events are induced by the Depot system (e.g., execute initial agent).

The most unusual characteristics of the above model are the following:

* Agents may be dynamically added, removed, or replaced by placing appropriately formatted
- management messages (i.e., active packets) on the input queue.

» Similarly, the SMM may be dynamically extended in various ways (just as new fields may be
added to a data schema), subject to straightforward consistency constraints.

» Agents do not directly invoke one another. Rather, agents may subscribe to an existing event.
An executing agent typically induces an event defined for its module by making a system
call. It is possible for an agent to explicitly invoke a lower level agent by name: however,
that is turned into an event by Depot so that subscribing agents may seize the thread of

" control. To the inducing agent, the call looks like an ordinary subroutine call and return: in
fact, any number of subordinate agents may have executed between the call and return.

One might characterize the system as a general facility for installing and managing
application “*hooks": the key new ideas are the division of sets of hooks by module, the partial
ordering of modules, binding hooks to network names, and the provision of a run-time model of
module behavior with the SSM. It is just these new features, however, that give us a means for
securing the Depot.
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Figure 2 illustrates the flow of control within-a Depot:
(a) Agent 1 makes a system call to allocate memory;
(b) as a result Agent 1 induces a state transition;

(c) the transition takes place in the SSM,;

(d) Agents A and B are invoked as subscribers to the SSM of the Module containing Agent
1; ,

(e) additional state transitions and invocations may take place in a chain of modules;
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Figure 2. Depot Flow of Control
() ultimately the system call to allocate memory is executed; and
(g) as in a threaded language, return is made to Agent 1.

The DEPOT software is divided into three parts: the integration library (consisting of that
code that must be rewritten to re-host DEPOT), DEPOT Core services, and a library of standard
extensions defining default DEPQOT object behavior. The standard library will be discussed in the
next section. This section describes the processing model to be implemented by Core services.
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A DEPOT is an extensible processing object with the following properties:

o Itis persistent. That is, it contains durable, recoverable state that gives it an identity that
spans network sessions and host downtimes. It has a network-visible name.

e It is stationary. That is, it resides on a particular host.

e Itis queue-driven. Each depot is associated with its own standard input queue, from which it
draws requests, and deposits its responses on its own standard output queue.

Conceptually, a DEPOT may be thought of as a specialized server: its application-level code
is basically a loop within which a request is dequeued, processed, and enqueued. “Add-on”
behavior is via dynamically added extensions. The goal is to completely decouple the
application logic from the environment: it refers only to programmer- or system-defined names
(e.g., stdin, stdout, stderr).

One may contrast a DEPOT with a more conventional object-oriented framework, which
consists of a set of defined object classes that can be specialized to work in a given target
environment.

“Specialization” means, ultimately, generating a brand-new object with some behaviors
different from the old. This may work well for new applications, but it is not a useful paradigm
for the integration of legacy servers written in languages that know nothing of inheritance.
Rather, non-application specific behaviors are added to DEPOT servers in the form of
dynamically linked, physically replaceable extensions. Because legacies can’t possibly invoke
new extensions by name, invocation of the extension must be based upon occurrence of some
event that the operating system can detect: e.g., a system call, program interrupt, or detection of a
fault as the program is running. We therefore provision the DEPOT with a run-time model of
application behavior, in the form of a non-deterministic state machine that represents the possible
sequences of detectable events available for potential interception by extensions. These
transitions are named. When a new extension is installed, the installing authority specifies by
name the set of events that are to trigger the extension. For new applications, of course, events
can be defined and triggered explicitly if desired (a facility analogous to the notion of a
“software interrupt”. This description provides an overview (with much detail suppressed) of
what we call “event-based programming” (EBP). For new applications, it is merely cute: but it is
a key feature for supporting the encapsulation of legacy servers.

For new applications, we encourage the programmer to think in terms-of the following
stru